metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

cis-Tetracarbonyl[(4-fluorophenyl)diphenylphosphine-*P*](piperidine-*N*)molybdenum(0)

Liam McElroy, Mark Nieuwenhuyzen* and Graham C. Saunders

School of Chemistry, The Queens University of Belfast, Belfast BT9 5AG, Northern Ireland Correspondence e-mail: woody.m@qub.ac.uk

Received 21 November 2000 Accepted 22 February 2001

The title molecule, $[Mo{P(C_6H_5)_2(C_6H_4F)}(HNC_5H_{10})(CO)_4]$ or $[Mo(C_{18}H_{14}FP)(C_5H_{11}N)(CO)_4]$, has irregular octahedral geometry about the Mo atom. The molecules form a complicated hydrogen-bonded network comprising C– $H\cdots O$, C– $H\cdots F$ and C– $H\cdots \pi$ hydrogen bonds and $\pi-\pi$ interactions. The C– $H\cdots \pi$ and $\pi-\pi$ interactions form chains containing C– $H\cdots \pi/\pi-\pi$ dimers linked *via* C– $H\cdots \pi$ interactions and the chains are linked into a three-dimensional network *via* C– $H\cdots O$ and C– $H\cdots F$ hydrogen bonds.

Comment

The molybdenum(0) complex cis-[Mo(CO)₄(HNC₅H₁₀)₂] is a convenient precursor for a range of cis-[Mo(CO)₄ L_2] (L =phosphine, phosphite, etc) complexes. Structural studies on a wide range of such complexes have been reported. However, to date, the structures of only three other intermediate piperidine-phosphine complexes, namely cis-[Mo(CO)₄(HN- $C_5H_{10}(PR_3)$], where R is Me₂Ph, MePh₂ and Ph₃, have been reported (Cotton et al., 1982a). A diffraction study of cistetracarbonyl[(4-fluorophenyl)diphenylphosphine-P](piper-N)molybdenum(0), (I) (Fig. 1), reveals a structure similar to that of $[Mo(CO)_4(HNC_5H_{10})(PPhMe_2)]$ [(II); Cotton *et al.*, 1982b], but with a significantly smaller P-Mo-N angle $[86.28 (7)^{\circ} \text{ for (I) } versus 90.77 (7)^{\circ} \text{ for (II); see Table 1]. The}$ piperidine ligand of (I) exhibits the expected chair conformation, and the distances and angles of this ligand are similar to those found for (II).

The geometry about the P atom is distorted tetrahedral and similar to the analogous complex *cis*-[Mo(CO)₄{P(C₆H₄-F-4)₃]₂] [(III); Alyea *et al.*, 1994]. The molecules of (I) are involved in a number of C-H···O intermolcular interactions from both the piperidine and phenyl groups, forming a threedimensional network (see Table 2). The ability of C-H to act as a hydrogen-bond donor to oxygen was established by Taylor & Kennard (1982). They showed that C-H···O interactions (i) are essentially electrostatic in nature, (ii) show C···O distances ranging from 3 to 4 Å and (iii) are likely to be linear. The phosphine ligands are involved in C-H··· π and π - π interactions with contacts from the ring centres to H atoms of 3.5 and 3.1 Å, respectively. These C-H··· π and π - π interactions combine to form chains along the *c* axis and these

chains can be thought of as containing $C-H \cdot \cdot \pi/\pi - \pi$ dimers linked via $C-H\cdots\pi$ interactions. These $C-H\cdots\pi/\pi-\pi$ interactions between the phenyl rings of phenylphosphines are well known and have been extensively investigated by Dance and co-workers (Dance & Scudder, 1995, 1996a,b; Lewis & Dance, 2000). The steric demands of the Mo coordination sphere promote formation of an unusual intramolecular N- $H \cdots \pi$ hydrogen bond between one of the phenyl rings and the N atom of the piperidine moiety. The fluoro substitutent of the 4-fluorophenyl ring is disordered over two rings, with a 58.8 (7)% occupancy for the major position, which is involved in an intermolecular $C-H \cdots F$ interaction with the piperidine moiety (Table 2). A comparison of the Mo-P bond lengths for (I), (II) (Cotton et al., 1982b) and the related complex (III) (Alyea et al., 1994), which contains 4-fluorophenyl groups, shows that the Mo-P bond in (I) is shorter than in (II); the values are 2.5670 (10) and 2.576 (2) Å, respectively, and are consistent with the Mo-P bond length of 2.5644 (4) Å in (III). Evidently, while the presence of an F atom in the para position of the phenyl ring has no effect upon the P-C

The molecular structure of (I) showing 30% probability displacement ellipsoids. The minor disorder component is not shown for clarity.

distances and P–C–P angles, it does reduce the Mo–P distance significantly; this is consistent with the steric argument put forward by Alyea *et al.* (1994).

Experimental

The title complex was obtained in small yield as a by-product of the reaction between cis-[Mo(CO)₄(HNC₅H₁₀)₂] and two equivalents of PPh₂(C₆H₄F-4) in dichloromethane. Crystals were obtained by cooling the reaction mixture to 273 K and were separated manually from those of cis-[Mo(CO)₄(PPh₂(C₆H₄F-4))₂].

Crystal data

$[Mo(C_{18}H_{14}FP)(C_5H_{11}N)(CO)_4]$	$D_x = 1.454 \text{ Mg m}^{-3}$
$M_r = 573.39$	Mo $K\alpha$ radiation
Monoclinic, C2	Cell parameters from 6
a = 13.601 (3) Å	reflections
b = 10.981 (3) Å	$\theta = 2-24^{\circ}$
c = 17.973 (4) Å	$\mu = 0.60 \text{ mm}^{-1}$
$\beta = 102.598 \ (6)^{\circ}$	T = 301 (2) K
$V = 2619.9 (11) \text{ Å}^3$	Block, pale yellow
Z = 4	$0.32 \times 0.19 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	4121 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.048$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction: multi-scan	$h = -16 \rightarrow 16$
(SADABS; Bruker, 1998)	$k = -12 \rightarrow 13$
$T_{\min} = 0.831, T_{\max} = 0.899$	$l = -21 \rightarrow 21$
12 823 measured reflections	Intensity decay: none
1975 independent reflections (plus	
2622 Friedel-related reflections)	

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0352P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.004$
$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983)
Flack parameter $= 0.27 (3)$

Analysis of the difference map and the displacement parameters of the (4-fluorophenyl)diphenylphosphine ligand revealed that the benzene ring with the *para*-fluoro substituent has two different orientations relative to the piperidine ligand. This has been modelled as a disorder of the F atom over the two rings, with an occupancy factor of 58.8 (7)% for the major component. Refinement of the Flack (1983) parameter showed the crystal to be racemically twinned, with 27 (3)% occupying the minor configuration within the crystal. H atoms were added at idealized positions 0.93 Å from phenyl C atoms, 0.97 Å from methylene C atoms and 0.91 Å from N21; they were then refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine

Table 1

6006

Selected geometric parameters (Å, °).

Mo1-C1	2.053 (5)	P1-C11B	1.840 (4)
Mo1-C2	1.971 (4)	P1-C11C	1.829 (4)
Mo1-C3	1.956 (4)	C14A-F14A	1.339 (8)
Mo1-C4	2.024 (4)	C1-O1	1.134 (5)
Mo1-N21	2.339 (3)	C2-O2	1.150 (4)
Mo1-P1	2.5670 (10)	C3-O3	1.164 (4)
P1-C11A	1.827 (4)	C4-O4	1.140 (5)
C1-Mo1-C2	86.87 (15)	C2-Mo1-P1	173.15 (12)
C1-Mo1-C3	88.88 (17)	C3-Mo1-C4	84.32 (16)
C1-Mo1-C4	169.94 (17)	C3-Mo1-N21	178.36 (15)
C1-Mo1-N21	92.50 (13)	C3-Mo1-P1	92.29 (12)
C1-Mo1-P1	99.85 (10)	C4-Mo1-N21	94.42 (13)
C2-Mo1-C3	89.15 (16)	C4-Mo1-P1	87.85 (12)
C2-Mo1-C4	85.63 (16)	N21-Mo1-P1	86.60 (8)
C2-Mo1-N21	91.80 (13)		

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N21-H21···C11A	0.91	2.46	3.231 (4)	142
$N21 - H21 \cdot \cdot \cdot C16A$	0.91	2.59	3.398 (5)	148
$C14C-H14C\cdotsO1^{i}$	0.93	2.68	3.352 (6)	130
$C13C - H13C \cdot \cdot \cdot O3^{i}$	0.93	2.93	3.535 (6)	124
$C23-H23A\cdots O2^{ii}$	0.97	2.70	3.467 (6)	137
$C24 - H24B \cdots O4^{iii}$	0.97	2.80	3.468 (6)	127
C24-H24 A ···F14 A ^{iv}	0.97	2.77	3.618 (9)	146

Symmetry codes: (i) 1 - x, y, 1 - z; (ii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, -z$; (iv) $\frac{1}{2} + x, y - \frac{1}{2}, z$.

structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1444). Services for accessing these data are described at the back of the journal.

References

- Alyea, E. C., Ferguson, G., Gallagher, J. F. & Song, S. (1994). Acta Cryst. C50, 1084–1086.
- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cotton, F. A., Darensburg, D. J., Klein, S. & Kolthammer, B. W. S. (1982a). Inorg. Chem. 21, 294–299.
- Cotton, F. A., Darensburg, D. J., Klein, S. & Kolthammer, B. W. S. (1982b). Inorg. Chem. 21, 1651–1655.
- Dance, I. & Scudder, M. (1995). J. Chem. Soc. Chem. Commun. pp. 1039–1040.
- Dance, I. & Scudder, M. (1996a). Chem. Eur. J. 2, 481–486.
- Dance, I. & Scudder, M. (1996b). J. Chem. Soc. Dalton Trans. pp. 3755–3769. Flack, H. D. (1983). Acta Cryst. A**39**, 876–881.
- Lewis, G. R. & Dance, I. (2000). Inorg. Chim. Acta, 306, 160-167.
- Sheldrick, G. M. (1997). *SHELXTL*. Version 5.10. University of Göttingen, Germany.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.